产品编号: DC28013 Featured
  • 20
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 10
  • 9
  • 8
  • 13
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
Cyclic-di-GMP 是 STING 的激动剂也是一个可以调节不同细菌物种的生物膜形成,运动性和毒力的第二信使。
Cas No.: 61093-23-0
别名: CYCLIC DIGUANOSINE MONOPHOSPHATE ( C-DIGMP )3'-Guanylic acid,guanylyl-(3'®5')-,cyclic 3'®5'''-nucleotide;CYCLIC BIS ( 3' → 5' ) DIGUANYLIC ACID;5'''-nucleotide;bis(3',5')-cyclic diguanylic acid
分子式: C20H24N10O14P2
分子量: 690.41
纯度: >98%
保存条件: 2 years -20°C Powder, 2 weeks 4°C in DMSO, 6 months -80°C in DMSO
Description: Cyclic di-GMP (also called cyclic diguanylate and c-di-GMP) is a second messenger used in signal transduction in a wide variety of bacteria.Cyclic di-GMP is not known to be used by archaea, and has only been observed in eukaryotes in Dictyostelium.The biological role of cyclic di-GMP was first uncovered when it was identified as an allosteric activator of a cellulose synthase found in Gluconacetobacter xylinus in order to produce microbial cellulose.
In structure, it is a cycle containing only two guanine bases linked by ribose and phosphate.

In bacteria, certain signals are communicated by synthesizing or degrading cyclic di-GMP. Cyclic di-GMP is synthesized by proteins with diguanylate cyclase activity. These proteins typically have a characteristic GGDEF motif, which refers to a conserved sequence of five amino acids. Degradation of cyclic di-GMP is affected by proteins with phosphodiesterase activity. These proteins have either an EAL or an HD-GYP amino acid motif. Processes that are known to be regulated by cyclic di-GMP, at least in some organisms, include biofilm formation, motility and virulence factor production.

Cyclic di-GMP levels are regulated using a variety of mechanisms. Many proteins with GGDEF, EAL or HD-GYP domains are found with other domains that can receive signals, such as PAS domains. Enzymes that degrade or synthesize cyclic di-GMP are believed to be localized to specific regions of the cell, where they influence receivers in a restricted space.[1] In Gluconacetobacter xylinus, c-di-GMP stimulates the polymerization of glucose into cellulose as a high affinity allosteric activator of the enzyme cellulose synthase.Some diguanylate cyclase enzymes are allosterically inhibited by cyclic di-GMP.

Cyclic di-GMP levels regulate other processes via a number of mechanisms. The Gluconacetobacter xylinus cellulose synthase is allosterically stimulated by cyclic di-GMP, presenting a mechanism by which cyclic di-GMP can regulate cellulose synthase activity. The PilZ domain has been shown to bind cyclic di-GMP and is believed to be involved in cyclic di-GMP-dependent regulation, but the mechanism by which it does this is unknown. Recent structural studies of PilZ domains from two bacterial species have demonstrated that PilZ domains change conformation drastically upon binding to cyclic di-GMP. This leads to the strong inference that conformational changes in PilZ domains allow the activity of targeted effector proteins (such as cellulose synthase) to be regulated by cyclic di-GMP. Riboswitches called the cyclic di-GMP-I riboswitch and cyclic di-GMP-II riboswitch regulate gene expression in response to cyclic di-GMP concentrations in a variety of bacteria, but not all bacteria that are known to use cyclic di-GMP.
In Vivo:
In Vitro:
Kinase Assay:
Cell Assay:
Animal Administration:
产品编号 产品名称 应用领域
DC28013 Cyclic-di-GMP(c-di-GMP) Cyclic-di-GMP 是 STING 的激动剂也是一个可以调节不同细菌物种的生物膜形成,运动性和毒力的第二信使。
DC28012 c-Di-AMP(Cyclic-Di-AMP) ammonium salt c-di-AMP (Cyclic diadenylate) 是 STING 激动剂,其与 STING 结合,从而激活 TBK3-IRF3 信号传导途径,随后引发 I 型 IFN 和 TNF 产生。c-di-AMP (Cyclic diadenylate) 是一种细菌第二信使,主要在革兰氏阳性细菌中,可调节细胞生长,存活以及毒力。c-di-AMP (Cyclic diadenylate) 也调节宿主免疫反应。c-di-AMP (Cyclic diadenylate) 可作为一种有效的粘膜佐剂,刺激体液和细胞